
WHITE PAPER

AN INSIGHT INTO MICROSERVICES
TESTING STRATEGIES
Arvind Sundar, Technical Test Lead

Abstract
The ever-changing business needs of the industry necessitate
that technologies adopt and align themselves to meet demands
and, in the process of doing so, give rise to newer techniques
and fundamental methods of architecture in software design. In
the context of software design, the evolution of “microservices”
is the result of such an activity and its impact percolates down
to the teams working on building and testing software in the
newer schemes of architecture. This white paper illustrates the
challenges that the testing world has to deal with and the effective
strategies that can be envisaged to overcome them while testing
for applications designed with a microservices architecture.
The paper can serve as a guide to anyone who wants an insight
into microservices and would like to know more about testing
methodologies that can be developed and successfully applied
while working within such a landscape.

Microservices attempt to streamline the

software architecture of an application

by breaking it down into smaller units

surrounding the business needs of

the application. The benefits that are

expected out of doing so include creating

systems that are more resilient, easily

scalable, flexible, and can be quickly and

independently developed by individual

sets of smaller teams.

Formulating an effective testing strategy

for such a system is a daunting task. A

combination of testing methods along

with tools and frameworks that can

provide support at every layer of testing is

key; as is a good knowledge of how to go

about testing at each stage of the test life

cycle. More often than not, the traditional

methods of testing have proven to be

ineffective in an agile world where changes

are dynamic. The inclusion of independent

micro-units that have to be thoroughly

tested before their integration into the

larger application only increases the

complexity in testing. The risk of failure and

the cost of correction, post the integration

of the services, is immense. Hence, there is

a compelling need to have a successful test

strategy in place for testing applications

designed with such an architecture.

Introduction

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

The definition of what qualifies as a

microservice is quite varied and debatable

with some SOA (service-oriented

architecture) purists arguing that the

principles of microservices are the same

as that of SOA and hence, fundamentally,

they are one and the same. However,

there are others who disagree and view

microservices as being a new addition to

software architectural styles, although

there are similarities with SOA in the

concepts of design. Thus, a simpler and

easier approach to understand what

microservices architecture is about, would

be to understand its key features:

• Self-contained and componentized

• Decentralized data management

• Resilient to failures

• Built around a single business need

• Reasonably small (micro)

The points above are not essentially the

must-haves for a service to be called a

microservice, but rather are ‘good-to-have.’

The list is not a closed one either, as it

can also include other features that are

common among implementations of a

microservices architecture. However, the

points provide a perspective of what can

be termed as a microservice. Now that we

know what defines a microservice, let us

look at the challenges it poses to testers.

The distributed and independent nature

of microservices development poses

a plethora of challenges to the testing

team. Since microservices are typically

developed by small teams working on

multiple technologies and frameworks, and

are integrated over light-weight protocols

(usually ReST over HTTPs, though this is

not mandatory), the testing teams would

be inclined to use the Web API testing

tools that are built around SOA testing.

This, however, could prove to be a costly

mistake as the timely availability of all

services for testing is not guaranteed, given

that they are developed by different teams.

Furthermore, the individual services are

expected to be independent of each other

although they are interconnected with

one another. In such an environment, a

key factor in defining a good test strategy

would be to understand the right amount

of testing required at each point in the test

life cycle.

Additionally, if these services integrate

with another service or API that is exposed

externally or is built to be exposed to the

outside world, as a service to consumers,

then a simple API testing tool would prove

to be ineffective. With microservices, unlike

SOA, there is no need to have a service

level aggregator like ESB (enterprise

service bus) and data storage is expected

to be managed by the individual unit.

This complicates the extraction of logs

during testing and data verification, which

is extremely important in ensuring there

are no surprises during integration. The

availability of a dedicated test environment

is also not guaranteed as the development

would be agile and not integrated.

Microservices architecture Challenges in testing microservices

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

In order to overcome the challenges

outlined above, it is imperative that the test

manager or lead in charge of defining the

test strategy appreciates the importance

of Mike Cohn’s Test Pyramidi and is able to

draw an inference of the amount of testing

required.

The pictorial view emphasizes the need to

have a bottom-up approach to testing. It

also draws attention to the number of tests

and in turn, the automation effort that

needs to be factored in at each stage. The

representation of the pyramid has been

slightly altered for the various phases in

microservice testing. These are:

i. Unit testing

 The scope of unit testing is internal to

the service and in terms of volume of

tests, they are the largest in number.

Unit tests should ideally be automated,

depending on the development

language and the framework used

within the service.

ii. Contract testing

 Contract testing is integral to

microservices testing and can be of

two types, as explained below. The

right method can be decided based on

the end purpose that the microservice

would cater to and how the interfaces

with the consumers would be defined.

a) Integration contract testing:

Testing is carried out using a test

double (mock or stub) that replicates

a service that is to be consumed.

The testing with the test double

is documented and this set needs

to be periodically verified with the

real service to ensure that there are

no changes to the service that is

exposed by the provider.

b) Consumer-driven contract testing:

In this case, consumers define the

way in which they would consume

the service via consumer contracts

that can be in a mutually agreed

schema and language. Here, the

provider of the service is entrusted

with copies of the individual

contracts from all the consumers.

The provider can then test the

service against these contracts to

ensure that there is no confusion in

the expectations, in case changes

are made to the service.

iii. Integration testing

 Integration testing is possible in case

there is an available test or staging

environment where the individual

microservices can be integrated before

they are deployed. Another type of

integration testing can be envisaged

if there is an interface to an externally

exposed service and the developer

of the service provides a testing or

sandbox version. The reliance on

integration tests for verification is

generally low in case a consumer-

driven contract approach is followed.

iv. End-to-end testing

 It is usually advised that the top layer

of testing be a minimal set, since a

failure is not expected at this point.

Locating a point of failure from an

end-to-end testing of a microservices

architecture can be very difficult and

expensive to debug.

Mike Cohn’s Testing Pyramid

E2E UI
Testing

Sc
op

e
of

 T
es

ti
ng

Ex
ec

ut
io

n
Ti

m
e

Number of Tests

Integration
Testing

Contrast
Testing

Unit
Testing

Approach to testing microservices and testing phases

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

• For unit testing, it would be ideal to

use a framework like xUnit (NUnit or

JUnit). The change in data internal to

the application needs to be verified,

apart from checking the functional

logic. For example, if reserving an

item provides a reservation ID on

success in the response to a REST call,

the same needs to be verified within

the service for persistence during unit

testing.

• The next phase of testing in

contract testing. In case there are

several dissimilar consumers of the

service within the application, it is

recommended to use a tool that can

enable consumer-driven contract

testing. Open source tools like Pact,

Pacto, or Janus can be used. This

has been discussed in further detail

in the last example and hence, in

the context of this example, we will

assume that there is only a single

consumer of the service. For such

a condition, a test stub or a mock

can be used for testing by way of

REST over HTTPS
Item ID. date

Reservation ID
Application

Mocked Service

Unit Testing Scope

Integration Testing Scope

Select
an Item Reserve

an item

In
te

gr
at

io
n

Co
nt

ra
ct

 T
es

ti
ng

 S
co

pe

integration contract testing. Data

being passed between the services

needs to be verified and validated

using tools like SOAPUI. For example,

an item number being passed

between the services that selects it to

the one that reserves it.

• E2E tests should ensure that

dependency between microservices

is tested at least in one flow, though

extensive testing is not necessary. For

example, an item being purchased

should trigger both the ‘select’ and

‘reserve’ microservices.

In order to get a clear understanding of how testing can be carried out in different scenarios, let us look at a few examples that can help

elucidate the context of testing and provide a deeper insight into the test strategies used in these cases.

• Scenario 1:

 Testing between microservices internal to an application or residing within the same application

 This would be the most commonly encountered scenario, where there are small sets of teams working on redesigning an application by

breaking it down into microservices from a monolithic architecture.

In this example, we can consider an e-commerce application that has two services a) selecting an item and b) reserving an item, which

are modelled as individual services. We also assume there is a close interaction between these two services and the parameters are

defined using agreed schemas and standards.

Testing scenarios and test strategy

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

• Unit tests should ensure that the

service model is catering to the

requirements defined for interacting

with the external service, while

also ensuring that internal logic is

maintained. Since there is an external

dependency, there exists a need to

ensure that requirements are clearly

defined and hence, documenting

them remains key. TDD approach is

suggested where possible and any of

the popular frameworks discussed in

the previous example can be chosen

for this.

• Contract testing can be used in this

case to test the expectations from

consumer microservices, that is, the

applications internal service, decoupling

it from the dependency on the external

web service to be available. In this

context, test doubles, created using

tools like Mockito or Mountebank,

can be used to define the PayPal API’s

implementation and tested. This is

essentially integration contract testing

and again needs to be verified with

a live instance of the external service

periodically, to ensure that there is no

change to the external service that has

been published and consumed by the

consumer.

• Integration tests can be executed if

the third-party application developer

• Scenario 2:

 Testing between internal microservices and a third-party service

 Here, we look at a scenario where a service with an application consumes or interacts with an external API. In this example,

we have considered a retail application where paying for an item is modelled as a microservices and interacts with the

PayPal API that is exposed for authenticating the purchase.

 Let us look at the testing strategy in each phase of the test cycle in this case:

provides a sandbox (e.g. PayPal’s

Sandbox APIii) for testing. Live testing

for integration is not recommended.

If there is no availability of a sandbox,

integration contract testing needs to be

exercised thoroughly for verification of

integration.

• E2E tests should ensure that there

are no failures in other workflows

that might integrate with the internal

service. Also, a few monitoring tests can

be set up to ensure that there are no

surprises. In this example, selecting and

purchasing an item (including payment)

can be considered an E2E test that can

run at regular and pre-defined intervals

to spot any changes or breaks.

PayPal (External) API

PayPal Sandbox API

Unit Testing Scope

Application

Pay for
an Item

Test Double

Virtual Provider

Firewall

 C
on

tr
ac

t T
es

ti
ng

 S
co

pe

Integration Testing Scope

REST over HTTPS

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

• Unit tests should cover testing for

the various functions that the service

defines. Including a TDD development

can help here to ensure that the

requirements are clearly validated

during unit testing. Unit test should also

ensure that data persistence within the

service is taken care of and passed on

to other services that it might interact

with.

• Contract testing – In this example,

consumers need to be set up by using

tools that help define contracts. Also,

the expectations from a consumer’s

perspective need to be understood.

The consumer should be well-defined

and in line with the expectations in the

live situation and contracts should be

collated and agreed upon.

 Once the consumer contracts are

validated, a consumer-driven contract

approach to testing can be followed. It

is assumed that in this scenario, there

would be multiple consumers and

hence, individual consumer contracts

for each of them. For example, in the

above context, a local retailer and

an international retailer can have

• Scenario 3:

 Testing for a microservice that is to be exposed to public domain

 Consider an e-commerce application where retailers can check for availability of an item by invoking a Web API.

different methods and parameters of

invocation. Both need to be tested

by setting up contracts accordingly.

It is also assumed that consumers

subscribe to the contract method of

notifying the provider on the way

they would consume the service and

the expectations they have from it via

consumer contracts.

• E2E tests – minimal set of E2E tests

would be expected in this case, since

interactions with external third parties

are key here

Unit Testing Scope

Application

 C
on

su
m

er
 D

ri
ve

n
Co

nt
ra

ct
 T

es
ti

ng
 S

co
pe

REST over HTTPS

REST over HTTPS

Customer
Contract 1 Virtual

Consumer 1

Customer
Contract 2 Virtual

Consumer 2

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Improvements in software architecture has led to fundamental changes in the way applications are designed and tested. Teams

working on testing applications that are developed in the microservices architecture need to educate themselves on the behavior of

such services, as well as stay informed of the latest tools and strategies that can help deal with the challenges they could potentially

encounter. Furthermore, there should be a clear consensus on the test strategy and approach to testing. A consumer-driven contract

approach is suggested as it is a better way to mitigate risk when services are exposed to an assorted and disparate set of consumers and

as it further helps the provider in dealing with changes without impacting the consumer. Ensuring that the required amount of testing

is focused at the correct time, with the most suitable tools, would ensure that organizations are able to deal with testing in such an

environment and meet the demands of the customer.

References : ihttps://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid

 iihttps://www.sandbox.paypal.com

In conclusion

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.slideshare.net/infosys
https://www.infosys.com/

